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Abstract—No polynomial classical algorithms can distinguish
between the 3-round Feistel cipher with internal permutations
and a random permutation. It means that the 3-round Feistel
cipher with internal permutations is secure against any chosen
plaintext attack on the classical computer. This paper shows
that there exists a polynomial quantum algorithm for distin-
guishing them. Hence, the 3-round Feistel cipher with internal
permutations may be insecure against a chosen plaintext attack
on a quantum computer. This distinguishing problem is an
instance that can be efficiently solved by exploiting the quantum
parallelism. The proposed algorithm is the first application of
Simon’s algorithm to cryptographic analysis.


I. INTRODUCTION


Quantum algorithms are superior to classical algorithms in


solving distinguishing problems such as the Deutsch-Jozza


problem [2], the Bernstein-Vazirani problem [1], and the


Simon problem [5]. The significance lies in the fact that they


can be solved dramatically faster on a quantum computer.


However, these distinguishing problems are somewhat artifi-


cial.


The concept of (in)distinguishability is important to prove


the security of classical cryptographic schemes. The typical


security proof is to prove that a cryptographic scheme is


indistinguishable from an ideal scheme. The Feistel cipher,


which is a structure of common-key block ciphers (e.g., DES,


Twofish, Camellia, and DEAL), has been extensively studied


in terms of the indistinguishability — Is the Feistel cipher


distinguishable from a random permutation? Patarin [4] has


summarized the results on this topic. Treger and Patarin [6]


have analyzed the indistinguishability of the Feistel cipher


with internal permutations recently. These results show that


the exponential-number queries are required to distinguish


between the Feistel cipher with 3 (or more) rounds and a


random permutation. It means that the Feistel cipher with 3


(or more) rounds is secure against any chosen plaintext attack.


Previous analysis on the Feistel cipher is based on


the classical algorithm. In this paper, we address the


(in)distinguishability of the 3-round Feistel cipher with inter-


nal permutations from a random permutation using a quantum


algorithm. Their distinguishability means that the 3-round


Feistel cipher with internal permutations may be insecure


against a chosen plaintext attack based on the quantum al-


gorithm.


Precisely speaking, we discuss the (in)distinguishability of


the unitary operator for computing the Feistel cipher from the


unitary operator for computing the random permutation. Since


the Feistel cipher is a classical cipher, one may think that


the comparison of unitary operators is meaningless. However,


if quantum computers are inexpensively realized in feature,


then even classical ciphers will be implemented on quantum


computers. In such a situation, an adversary will have access


to the unitary operator instead of the classical oracle. Hence, it


is significant to study the (in)distinguishability in the context


of quantum algorithms.


We previously reported that there exist quantum algorithms


that are more efficient than any classical algorithm for distin-


guishing between the 2(or 3)-round Feistel cipher and a ran-


dom permutation [3]. However, the complexity of the previous


algorithm for the 3-round Feistel cipher is exponential.


This paper shows that there exists a polynomial quantum al-


gorithm for distinguishing between the 3-round Feistel cipher


with internal permutations and a random permutation. It means


that the 3-round Feistel cipher with internal permutations


is potentially insecure against a chosen plaintext attack on


the quantum computer. Notice that no polynomial classical


algorithms can distinguish between the 3-round Feistel cipher


with internal permutations and a random permutation.


This paper is organized as follows: Section II describes


definitions and notations. Section III describes the proposed


algorithm for distinguishing between the 3-round Feistel ci-


pher with internal permutations and a random permutation.


The success probability and the complexity of the algorithm


are shown. Section IV concludes this paper.


II. DEFINITION


Let Pm be a set of all permutations on {0, 1}m. A permuta-


tion is called a random permutation (RP) if it is chosen from


Pm randomly. Figure 1 illustrates a 3-round Feistel cipher with
internal permutations (FP). In Fig. 1, internal permutations


P1, P2, P3 are independent random permutations on {0, 1}n.


The 3-round Feistel cipher with internal permutations is a


permutation on {0, 1}2n. Formally, for a given x = a ‖ c
where a, c ∈ {0, 1}n and ‖ is the concatenation operator on
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Fig. 1. The 3-round Feistel cipher with internal permutations,
FP(a ‖ c) = s ‖ t.


strings, the FP is defined as


FP(x) = FP(a ‖ c)
= c ⊕ P2(a ⊕ P1(c))


‖ (a ⊕ P1(c)) ⊕ P3(c ⊕ P2(a ⊕ P1(c)))
= s ‖ t. (1)


Consider the following distinguishing problem.


Let V be either the 3-round Feistel cipher with


internal permutations (FP) or a random permutation


(RP) on {0, 1}2n. Determine whether V is the FP


or the RP by making queries to V . Notice that the


query to the inverse mapping V −1 is not allowed.


Treger and Patarin [6] have shown that any classical algorithm


requires Θ(2
n
2 ) queries to determine it. Namely, FP is secure


against any chosen plaintext attack that makes queries less


than Θ(2
n
2 ).


This paper addresses solving this problem with a quantum


algorithm. The above problem is translated as follows:


Let V be either the 3-round Feistel cipher with


internal permutations (FP) or a random permutation


(RP) on {0, 1}2n. Let UV be a unitary operator for


computing V , which is defined by


UV |x〉|y〉 = |x〉|y ⊕ V (x)〉,


where x, y ∈ {0, 1}2n. Determine whether V is the


FP or the RP by making queries to UV . The unitary


operator for the inverse mapping V −1 is not given.


We previously showed that there was an exponential quantum


algorithm for solving the problem with O
(
2


n
3
)


queries [3].


The next section will give a polynomial algorithm for solving


the problem.


III. PROPOSED ALGORITHM


A. Idea


This section shows that the addressed problem can be solved


in a similar manner as Simon’s problem. We first define a


function W as the first n bits of V . If V is the 3-round Feistel


cipher with internal permutations (FP), then W is written as


W (x) = W (a ‖ c)
= c ⊕ P2(a ⊕ P1(c)) (2)


by using notation of Eq. (1). Let α, β be distinct fixed strings


in {0, 1}n. Consider the following function f from {0, 1}n+1


to {0, 1}n.


f(b ‖ a) =
{


W (a ‖ α) ⊕ β if b = 0
W (a ‖ β) ⊕ α if b = 1,


where b ∈ {0, 1} and a ∈ {0, 1}n. The behavior of f depends


on W (i.e., V ). To determine whether V is the FP or the RP,


we focus on the behavior of f . When V is the FP, f has a


remarkable property as follows:


f(b ‖ a) = f(b′ ‖ a′)
if and only if b′ = b ⊕ 1 ∧ a′ = a ⊕ z,


where z = P1(α)⊕P1(β). In other words, for a given b ‖ a ∈
{0, 1}n+1, a value t satisfying


f(b ‖ a) = f(t)


is only (b ‖ a)⊕ (1 ‖ z). The proof is given in Appendix. On


the other hand, when V is the RP, there is no such a relation.


The above remarkable property is essentially equivalent to


the condition on Simon’s problem. Furthermore, the unitary


operator Uf for computing f can be constructed with one


invocation of the unitary operator UV for computing V .


Uf |x〉|y〉 = |x〉|y ⊕ f(x)〉,
where x ∈ {0, 1}n+1 and y ∈ {0, 1}n. Hence, the addressed


problem is closely related to Simon’s problem.


B. Algorithm and Analysis


The quantum algorithm for solving the addressed problem


is described below. This algorithm is very similar to Simon’s


algorithm. The proposed algorithm is the first instance in


which Simon’s algorithm is used for cryptographic analysis.


1) Initialize a set V as the empty set.


2) Prepare a state |φ1〉


|φ1〉 =
1√


2n+1


∑
x∈{0,1}n+1


|x〉|f(x)〉


by using the unitary operator Uf .


3) Measure the second register |f(x)〉. The measurement


is denoted by y. The resulting state is written as


|φ2〉 =
1√
λ


∑
x∈Xy


|x〉, (3)


where Xy is a set of x’s satisfying y = f(x) and λ is


the number of elements in Xy . Since the second register


will be fixed from now on, we will no longer write it


down explicitly.
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4) Apply the Hadamard transformation Hn+1 to |φ2〉.
|φ3〉 = Hn+1|φ2〉


=
1√


λ2n+1


∑
v∈{0,1}n+1


(−1)x·v|v〉, (4)


where ‘·’ indicates the inner product of two (n + 1)-bit


binary vectors.


5) Measure the register |v〉. The measurement v is ap-


pended to the set V .


6) If V does not contain n lineally independent v’s, then


go back to step 2. Otherwise, find an n-bit string z =
(z0, z1, . . . , zn−1) by solving the following equations.⎛
⎜⎜⎜⎝


v
(0)
1 v


(0)
2 . . . v


(0)
n


v
(1)
1 v


(1)
2 . . . v


(1)
n


· · ·
v
(n−1)
1 v


(n−1)
2 . . . v


(n−1)
n


⎞
⎟⎟⎟⎠


⎛
⎜⎜⎜⎝


z0


z1


...


zn−1


⎞
⎟⎟⎟⎠


=


⎛
⎜⎜⎜⎜⎝


v
(0)
0


v
(1)
0
...


v
(n−1)
0


⎞
⎟⎟⎟⎟⎠ (mod 2), (5)


where v
(i)
j ∈ {0, 1} and (v(i)


0 , v
(i)
1 , . . . , v


(i)
n ) is an


element in V .


7) Choose an (n + 1)-bit string u at random. Let


u′ = u ⊕ (1 ‖ z).


Compute f(u) and f(u′) classically. If they are equal,


then V is guessed to be the FP. Otherwise V is guessed


to be the RP.


We justify the output of the above algorithm. Suppose that V
is the FP. Then, Eq. (3) is written by


|φ2〉 =
1√
2


(|x〉 + |x ⊕ (1 ‖ z)〉)


because of the property of f described in Sect. III-A. Equa-


tion (4) is given by


|φ3〉 =
1√


2n+2


∑
v∈{0,1}n+1


(
(−1)x·v + (−1)(x⊕(1‖z))·v


)
|v〉


=
1√


2n+2


∑
v∈{0,1}n+1


(−1)x·v
(
1 + (−1)(1‖z)·v


)
|v〉


The above equation implies that the measurement v in step 5


satisfies


(1 ‖ z) · v = 0 (mod 2),


which is one of equations in Eq. (5). Since f(u) is always


equal to f(u′) in step 7, the output of this algorithm is correct.


On the other hand, suppose that V is the RP. The string


z obtained by solving Eq. (5) is random if exists. Hence, the


probability that f(u) = f(u⊕(1 ‖ z)) is (2n−1)/(22n−1) ≈
2−n.


The number of iterations from step 2 to step 5 is expected to


be O (n). This estimation on iteration is obtained in a manner


similar to Simon’s analysis.


Theorem 1: There is a quantum algorithm for distinguish-


ing the 3-round Feistel cipher with internal permutations from


a random permutation on {0, 1}2n. The complexity of the


algorithm is O (n) and the error probability is approximately


equal to 2−n.


IV. CONCLUDING REMARKS


Any classical algorithm requires Θ(2
n
2 ) queries for dis-


tinguishing between the 3-round Feistel cipher with internal


permutations and a random permutation. This result means


that the 3-round Feistel cipher with internal permutations


is secure against any chosen plaintext attack on a classical


computer. This paper has shown that there exists a quantum


algorithm for distinguishing them with O (n) queries. It means


that the 3-round Feistel cipher with internal permutations may


be insecure against a chosen plaintext attack on a quantum


computer. This quantum algorithm is the first instance in which


Simon’s algorithm is applied to cryptographic analysis.
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APPENDIX


Supposing that V is the FP, we prove the following lemma.


Lemma 1: For any distinct strings b ‖ a, b′ ‖ a′ in


{0, 1}n+1,


f(b ‖ a) = f(b′ ‖ a′)
⇔ b′ = b ⊕ 1 ∧ a′ = a ⊕ z,


where z = P1(α) ⊕ P1(β).
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(⇒) Suppose that b = b′ = 0. Then, using Eq. (2), we have


f(0 ‖ a) = W (a ‖ α) ⊕ β


= α ⊕ P2(a ⊕ P1(α)) ⊕ β,


f(0 ‖ a′) = W (a′ ‖ α) ⊕ β


= α ⊕ P2(a′ ⊕ P1(α)) ⊕ β.


Since f(0 ‖ a) = f(0 ‖ a′) and P2 is permutation we obtain


a = a′. It follows that b′ ‖ a′ = b ‖ a, which is a trivial case.


Next, suppose that b = 0, b′ = 1. Then, we have


f(1 ‖ a′) = W (a′ ‖ β) ⊕ α


= β ⊕ P2(a′ ⊕ P1(β)) ⊕ α.


Since f(0 ‖ a) = f(1 ‖ a′) and P2 is permutation, we obtain


a′ = P1(β) ⊕ a ⊕ P1(α)
= a ⊕ z.


We can prove other cases in a simiar manner.


(⇐) This is proved with direct calculation. Suppose that b = 0.


Then, we have


f(0 ‖ a) = α ⊕ P2(a ⊕ P1(α)) ⊕ β,


f(1 ‖ a′) = f(1 ‖ (a ⊕ z))
= β ⊕ P2((a ⊕ z) ⊕ P1(β)) ⊕ α


= β ⊕ P2(a ⊕ P1(α)) ⊕ α.


Hence, f(0 ‖ a) = f(1 ‖ a′). We can prove the case of b = 1
in a simiar manner.
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